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Abstract

The paper describes a new time-marching method for calculating two-dimensional, dilute, non-
turbulent, gas-particle ¯ows using an Eulerian formulation. The method is accurate and robust, and
overcomes many of the de®ciencies of other schemes reported in the literature. A particular feature is
the ability to calculate the particle density ®eld accurately even in the vicinity of discontinuities, particle-
free `shadow' zones and particle separations from solid surfaces. The paper discusses the ill-posedness of
the Eulerian equations and describes the numerical scheme, focusing on (i) the particle boundary
condition at solid surfaces, (ii) the capture of discontinuities in the particle density ®eld, (iii) special
techniques to handle shadow zones, (iv) convergence acceleration for particle ¯ows with very small
Stokes numbers and, (v) the possibility of crossing particle trajectories. Applications of the method are
illustrated by calculations of particle ¯ow over a circular cylinder and through a turbine cascade. The
results agree well with the predictions of a computationally more expensive Lagrangian tracking code
and the method o�ers the possibility of extension to include turbulent particle transport. 7 2000
Elsevier Science Ltd. All rights reserved.

Keywords: Particle transport; Deposition; Multiphase ¯ow; Eulerian; Lagrangian tracking; Discontinuity; Shadow
zone

1. Introduction

Dilute gas-particle ¯ows are common both in natural and industrial processes. One
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important engineering application is in clean-coal gas turbine systems for electrical power
generation where micrometre sized ¯y-ash particles generated by a coal gasi®er or ¯uidised bed
combustor may deposit on the turbine blade surfaces, reducing output power, e�ciency and
structural integrity (Wenglarz, 1981). In such cases, both inertial and di�usional mechanisms
operate in concert to transport particles to the blade surfaces. Particle inertia is responsible for
the deviation of the particle trajectories from the curved gas streamlines in the central passage
region and also for the inability of the particles to replicate the motion of the gas eddies in the
turbulent boundary layers adjacent to the blades. Within these boundary layers, particle
transport by turbulent di�usion is important and, in the presence of strong temperature
gradients, thermophoresis may be signi®cant.
As a prelude to a computation involving all transport mechanisms, it is prudent to examine

each phenomenon in isolation as far as this is possible. Turbulent deposition, for example, can
be studied in turbulent pipe-¯ow, as this eliminates the complication of inertia e�ects due to
curved streamlines. Many experimental and theoretical studies of this con®guration have been
made (Papervergos and Hedley, 1984) and a theory is now available (Young and Leeming,
1997) which is believed to model the physics of pipe-¯ow deposition in a reasonably
satisfactory manner and which o�ers the possibility of extension to more complex situations.
The present paper concentrates on the calculation of particle transport in non-turbulent,

dilute particle ¯ows where deposition is caused entirely by particle slip generated by the
streamline curvature of the carrier gas ¯ow. (The adjective dilute implies that the gas ¯ow is
not in¯uenced by the presence of the particles). There are two fundamentally di�erent
approaches for calculating ¯ows of this type, referred to as the Lagrangian and Eulerian (or
two-¯uid) methods. In fact, both methods use standard Eulerian CFD solvers to obtain the gas
¯ow®eld but then use di�erent techniques for calculating the particle motion.
In the Lagrangian method, the particle momentum equation is integrated numerically along

particle pathlines to give the particle velocity ®eld. This is a standard technique (e.g., Valentine
and Decker, 1994) but the solution of the particle continuity equation to give the particle
density ®eld is much more di�cult. The usual approach is to compute a large number of
particle paths and estimate the number instantaneously resident within each computational cell
of an Eulerian grid (Crowe et al., 1977). Unfortunately, however, a large computational e�ort
is required to track the various particles needed to reduce the statistical noise in the results.
The problem is compounded when a stochastic or `random walk' element is introduced to
model the e�ects of particle turbulence. Even with dramatic improvements in computer speed it
is doubtful whether this method will ever be able to resolve the details of complex 3D particle
¯ow®elds with turbulent boundary layers. Indeed, it is conceptually unclear how the
Lagrangian approach can handle di�usive ¯uxes resulting from turbulent ¯uctuations of
particle density.
In the Eulerian method, the particle equations are solved in Eulerian form (e.g., Ohkawa

and Tomiyama, 1994). This approach is attractive as similar techniques may be used for both
phases, allowing relatively easy inclusion of two-way coupling e�ects. Turbulence closure
models can be incorporated without the computational penalty of the Lagrangian approach
and, indeed, the method has been used to predict turbulent particle transport while neglecting
inertia e�ects due to streamline curvature (Menguturk and Sverdrup, 1981; Parker and Lee,
1972). Particle bouncing and crossing trajectories present serious di�culties but, nonetheless,
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the approach provides the best vehicle for calculating particle transport when inertial and
turbulent mechanisms are both important and was therefore chosen for the present study.
Eulerian schemes are not as common as their Lagrangian counterparts because they are

intrinsically more di�cult to develop and code. There are also a number of computational
problems which have never been satisfactorily addressed in the literature. These include, (i) the
implementation of surface boundary conditions, (ii) the accurate capture of density
discontinuities, (iii) techniques for handling the equations in particle-free `shadow' zones, (iv)
convergence acceleration for ¯ows at very low Stokes numbers and, (v) the thorny problem of
`crossing trajectories'. The new method cannot deal with particle re¯ections at solid surfaces or
crossing trajectories, but otherwise provides a robust solution to all of these di�culties.

2. Basic equations

In dilute gas-particle ¯ows, the gas-phase equations are uncoupled from the particle
equations and may be solved in isolation. The problem of establishing the gas ¯ow®eld is
therefore separate from the current investigation and is not discussed here.
The conservation equations of mass and momentum for the unsteady ¯ow of mono-

dispersed spherical particles may be written (using cartesian tensor notation with the repeated
su�x summation convention) as,
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where rp is the particle density (mass of particles per unit volume), Vi is the i-component of
particle velocity and Ui is the i-component of gas velocity. The particle dynamic relaxation
time tp is given by,
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where tp, Stokes is the value for a spherical particle in Stokes ¯ow,

tp, Stokes �
d 2

prmat

18mG

�4�

dp being the particle diameter, rmat the particle material density and mG the gas dynamic
viscosity. 1� f�Rep� represents a correction for ®nite particle slip velocities based on the local
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value of the particle slip Reynolds number Rep, and 1� c�Knp� is a correction for rare®ed gas
e�ects based on the local value of the particle Knudsen number Knp: For the present work, the
functions f and c are speci®ed by the empirical expressions of Morsi and Alexander (1972)
and Cunningham (see Crowe et al., 1998, p. 75), respectively.
In writing the momentum equation, it has been assumed that rmat � rg (where rg is the gas

density), so that the virtual mass, pressure gradient and Basset history terms can be neglected.
The gravity and lift force terms have also been omitted, together with any contributions from
turbulent transport mechanisms. Eqs. (1) and (2) therefore provide a simple framework suited
to the investigation of inertial phenomena.

3. Ill-posedness of the particle equations

Super®cially, Eqs. (1) and (2) resemble the Euler equations of gas dynamics but their
behaviour is actually quite di�erent because of the lack of a pressure gradient term in the
momentum equation. The particle equations are hyperbolic and, as discussed by Fernandez de
la Mora and Rosner (1981), information can only travel through the computational domain in
the direction of the particle pathlines (which are the characteristics of the equations). This
behaviour has important consequences because the equation set may become ill-posed. With
the exception of a small body of Russian literature (e.g., Osiptsov, 1984, 1985, 1997) and
sporadic Western research, such considerations have been almost completely ignored. The
manifestations of ill-posedness are evident in various published studies, although often the
behaviour is falsely attributed to some kind of genuine physical phenomenon.
The most obvious example of ill-posedness is when individual particle pathlines cross. This is

possible because the particles do not form their own pressure ®eld and do not respond directly
to the ¯uid pressure. Lagrangian modelling methods can readily deal with this behaviour since
each particle carries with it su�cient information to de®ne its own velocity at the crossing
point. Eulerian methods, however, work with a single `®eld' value for the velocity which, in
regions of crossing trajectories, represents an average value. When particle trajectories cross,
Eulerian methods can sometimes generate solutions which are not only inaccurate but also
physically incorrect.
Such a situation is shown in Fig. 1, which illustrates the intersection in a uniform gas

¯ow®eld of two oblique particle `jets'. Because the particle ®eld is assumed to be dilute, there is
no interaction of the jets in the crossing region. The Lagrangian calculation can handle this
situation and provides a physically correct solution with the jets emerging from the crossing
region intact and the particle density in the crossing region exactly double that for a single jet.
The Eulerian calculation, on the other hand, averages the two velocities in the crossing region,
thus losing information about the cross-stream components. Downstream, the solution bears
no resemblance to physical reality.
Fig. 2 shows a similar situation with particles rebounding from a solid surface. The ¯ow®eld

is that of an inviscid gas approaching a stagnation point and the particle trajectories have been
calculated from the well-known analytical solution assuming perfectly elastic collisions at the
wall. In the crossing trajectory region, information is convected towards the wall by the
incident ¯ow and away from the wall by the re¯ected ¯ow. A Lagrangian approach can model
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Fig. 1. Intersecting particle `jets' in a uniform gas ¯ow. Contours of particle density calculated by (a) Lagrangian
method, (b) Eulerian method.

Fig. 2. Lagrangian solution of plane 2D stagnation point ¯ow with particle rebound.
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this situation correctly but the Eulerian equations cannot convect information in two or more
directions simultaneously. This implies that Eulerian methods couched in terms of a single-
valued velocity vector cannot represent any degree of particle re¯ection. The only acceptable
boundary condition corresponds to a perfectly absorbing wall and (given the direction of
information ¯ow) this must be implemented in such a way that incident particles are unaware
of the presence of the wall until the moment of impact.
This basic requirement is often ignored. Indeed, the most common boundary condition

reported in the literature is that of a zero wall-normal particle ¯ux (Ho�mann and Galea,
1993; Yang et al., 1993; Thai-Van et al., 1994). Sometimes this is applied in the hope of
modelling perfect re¯ection (incident and re¯ected streams cancel each other out) and
sometimes perfect absorption (deposited particles have zero wall-normal velocity). In practice,
the zero ¯ux condition has the undesirable e�ect of forcing the particle ¯ow to turn parallel to
the wall and results in a spurious increase in particle density close to the surface. Often, this is
believed to represent a deposited ®lm of particles, but actually a physically meaningless steady-
state has been achieved whereby stabilising di�usive terms (modelled or arti®cial) drive a
di�usive particle ¯ux back into the ¯ow, just balancing the incoming convective ¯ux.
The only known method for modelling particle re¯ection correctly with a single-velocity

Eulerian approach is to use the superposition technique whereby the impaction velocities from
the ®rst calculation are used to generate the initial conditions for a second, independent,
calculation, and so on. The particle density ®elds from each calculation are then summed to
give the total density (Saurel et al., 1995). This technique is not as straightforward as it sounds,
however, and has only been demonstrated with comparatively simple ¯ow®elds.
It is not always appreciated that trajectory crossing can also occur in the main ¯ow®eld even

when particles and carrier gas both enter the domain as uniform parallel ¯ows. This type of
situation has been analysed very instructively by Osiptsov (1984) who describes a number of
cases when the particle density actually becomes in®nite at singular points, lines or surfaces
within the ¯ow. Generally speaking, crossing trajectories become more likely as particle inertia
increases and hence it follows that Eulerian methods may become less accurate with increasing
Stokes number. In most cases, there is no way of anticipating this di�culty a priori and
rudimentary Lagrangian calculations should always be performed to check for crossing
trajectories if there is any doubt about the validity of the Eulerian assumptions.
Crossing trajectories represent a situation where the ¯ow is `over-prescribed'. Another

example of ill-posedness occurs in particle-free `shadow zones' but here the ¯ow is `under-
prescribed'. A simple example is given in Fig. 3 which shows the variation with (non-
dimensional) distance of the particle velocity and density when a uniform ¯ow of particles are
injected with a ®nite velocity into a stationary gas. Solving the particle mass and momentum
equations analytically shows that the particle velocity decreases linearly to zero at x � 1 as the
particle density increases without bound. The region x > 1 is a particle-free shadow zone. The
particle ¯ow is well-posed up to x � 1 but the shadow zone receives no information from the
particles in the region 0RxR1: In multi-dimensional ¯ows much more complex shadow zones
can form.
Lagrangian methods can deal with shadow zones easily because particles never enter the

regions in question and the boundaries are de®ned by the limiting trajectories. Eulerian
methods, on the other hand, must solve the equations over the whole domain, including
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the shadow zones, as the boundaries are not known at the start of the calculation.
Because shadow zones are outside the domain of dependence of the main particle ¯ow,
the Eulerian equations are under-prescribed in these regions. The mathematical
implications of this fact have not been addressed in the literature to date. The solution
proposed in the present work is to postulate the existence in shadow zones of a `virtual'
particle ¯ow with density e�ectively zero but with a ®nite valued and smoothly varying
velocity ®eld. The origin of this virtual particle ¯ow can always be traced back to solid
boundaries within the shadow zone itself. It is, therefore, essential to prescribe solid
surface boundary conditions for this region which will produce a virtual particle ¯ow
which will not destabilise the calculations and will also blend smoothly with the real
particle ¯ow at the shadow zone edge. It is not simple, however, to devise a boundary
condition that will accurately model particle deposition in impaction regions and also
generate stable virtual ¯ows in shadow zones which are initially unde®ned.
Frequently, all these manifestations of ill-posedness can be found within a single ¯ow®eld.

Fig. 3. 1D particle ¯ow in a stationary gas showing the particle density discontinuity and shadow zone.

Fig. 4. Flow regimes for particle transport over a circular cylinder in an inviscid gas ¯ow with rebound.
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Fig. 4, for example, shows the over-prescribed and under-prescribed regions for particle ¯ow
(with bouncing) over a circular cylinder in a potential gas ¯ow. This is a comparatively simple
two-dimensional ¯ow®eld and bodies with more complex geometries (such as the turbine
cascade analysed later in the paper) may well generate more than one shadow zone. Clearly,
the requirements on an Eulerian method to produce an accurate solution of the particle
equations and be robustly stable are not easy to maintain.

4. Numerical discretisation

In non-conservative form, the momentum equation (2b) does not involve the particle density
rp and may be solved independently of the mass equation (1) using a ®nite di�erence
technique. This is the basis of the Lagrangian trajectory approach but is not to be
recommended for an Eulerian method. In order to guarantee ¯ux conservation, a ®nite volume
rather than ®nite di�erence scheme is preferable and this necessitates writing the momentum
equation in conservative form. Hence, at the expense of weakly recoupling the momentum
equation, Eqs. (1) and (2a) are taken as the working forms.
The ®nite volume equations are generated by integrating over a computational cell of

volume dO and applying Gauss's theorem. The result is,

Drp

Dt
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X
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rpVjdAj �5�
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where dAj is the projection in the j-direction of the vectorial area of a cell face and the
summation is over all the faces enclosing the volume dO: A forward-di�erence time-derivative
is implied by the notation Dpr=Dt and D�prVi �=Dt:
Eqs. (5) and (6) are applied to every cell of a two-dimensional structured grid, an example of

which is shown in Fig. 5. The equations are then marched forward in time, updating the values
of rp and rpVi at every step, until a steady-state is achieved. Cell centred storage is used and,
for internal cells, the ¯uxes of mass and momentum crossing the faces are calculated from the
linear average of the variables stored at adjacent cell centres. On a cartesian mesh with
uniform grid spacing, this is equivalent to second-order accurate central di�erencing. It would
be a straightforward task to improve accuracy on a non-uniform mesh by using weighting
functions based on grid geometry (Hirsch, 1990) but this is hardly necessary if the grid spacing
changes slowly.
The choice for ¯ux evaluation may be seen as somewhat contrary to the ¯ow physics and it

is necessary to restore the hyperbolicity of the governing equations through the introduction of
arti®cial di�usion terms as described below. This approach is preferable to the fully upwinded
schemes more usually employed (Ohkawa and Tomiyama, 1994; Yang et al., 1993) as the ¯ux
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evaluations are symmetrical and the order of accuracy is higher. In any case, arti®cial di�usion
is required for the stable capture of particle density discontinuities.

5. Arti®cial di�usion

The form of arti®cial di�usion applied to the basic equations is crucial in ®nding a good
balance between accuracy and stability. A `tuneable' di�usivity is needed to provide a
controlled amount of low-level upwinding over most of the ¯ow®eld but an increased level
near particle density discontinuities so that these features are captured in a stable and accurate
manner. To this end, a form of arti®cial di�usion is used which is similar to that developed by
Jameson et al. (1981) for shock capturing in supersonic gas ¯ows. This involves adding explicit
second- and fourth-order arti®cial di�usion terms to the conservation equations.
With reference to Fig. 6, a term ADF representing the sum of four arti®cial di�usive ¯uxes

through the cell faces is added to the right-hand sides of each of Eqs. (5) and (6):

ADF � AFE ÿ AFW � AFN ÿ AFS �7�
where,

AFE=W �
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!
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Fig. 5. Details of the 2D computational grid.
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The variable f represents, in turn, rp and each of the components rpVi: It should be noted
that these expressions ignore the fact that the local �x, Z� coordinate system may not be
orthogonal. This is not important, however, as the arti®cial ¯uxes are small and are only
included to stabilise the calculation. The arti®cial di�usivities are de®ned by,
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4
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with the second- and fourth-order coe�cients given by,
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where b2 and b4 are user-speci®ed coe�cients (typically 0.1 and 0.01, respectively), and Dtx and
DtZ are directionally dependent time scales discussed below. In Eqs. (8) and (10), all partial
derivatives are represented by central di�erences.
From Eqs. (9) and (10), it can be seen that the second-order di�usivities D2x and D2Z are

proportional to the corresponding second derivatives of rp: Normally, therefore, the second-

Fig. 6. De®nition sketch for arti®cial di�usive ¯uxes.
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order di�usive terms are only activated near shadow zone boundaries where the density
curvature is high. The fourth-order ¯uxes are used to damp any numerical `wiggles' in the
main ¯ow®eld caused by odd±even decoupling of the numerical scheme. The form of D4x and
D4Z ensures that these ¯uxes are suppressed in regions of high density curvature where they can
have a destabilising in¯uence.
The directionally dependent time scales Dtx and DtZ are calculated from the prescription,�

DZ
Dx
Dtx

�
E=W

�
 

Convective mass flux
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!
E=W

�
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�
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�
 

Convective mass flux

rp

!
N=S

�11�

By linking the magnitude of the arti®cial ¯ux to the real convective ¯ux, the arti®cial
di�usivities are rendered anisotropic. This is highly bene®cial as it ensures that smoothing is
applied only in directions where it is required and that the arti®cial di�usion operates correctly
even on highly stretched meshes.

6. Boundary conditions

As discussed previously, the only physically meaningful solid surface boundary condition
applicable when the particle equations are written in terms of a single-valued velocity vector is
that corresponding to perfect absorption. This is the condition implemented here.
The physical requirement of an absorbing boundary condition must allow the wall-normal

particle ¯ux at the surface to change in response to local ¯ow conditions. This can be
formulated in a number of di�erent ways. For example, Saurel et al. (1995) and Hussainov et
al. (1996) enforced zero wall-normal gradients of particle density and velocity in order to
generate the required particle ¯uxes at the boundary. This corresponds to a zeroth order
extrapolation from the ¯ow to the wall, but a ®rst order scheme (where the wall-normal
gradients are extrapolated) is more accurate and is the method adopted here. Higher order
extrapolations can be devised but are more prone to instability.
Gradient extrapolation is stable when the particle velocity vector points towards the wall. If

the vector points away from the wall, however, extrapolation to the boundary corresponds to a
downwinded ¯ux evaluation and is unconditionally unstable. This situation can arise, not only
as an unphysical ¯uctuation during the transient phase of the calculation, but also as a genuine
part of the steady-state solution on solid boundaries within shadow zones. In such cases, the
`virtual' particle ¯ow in the shadow zone is not unique and depends on the boundary
conditions applied at the wall. One way of ®xing the solution stably is to impose a zero wall-
normal particle ¯ux at the boundary. The particle velocity component parallel to the wall may
still be non-zero and this provides continuity of velocity, at the wall, between the real and
virtual ¯ows on either side of a particle separation line. At such points, it is found that rp in
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the cell adjacent to the wall decreases with time and tends to zero. This low density region then
convects through the ¯ow domain and establishes the shadow zone.
As the direction of the local particle velocity vector may change as the calculation proceeds,

it is not known a priori which boundary condition to impose at any particular point along a
wall. The choice must therefore be made automatically at each time-step. Referring to Fig. 7, a
gradient extrapolation is ®rst performed to all the solid walls and the resulting wall-normal
particle ¯ux is calculated. If this is directed towards the wall, gradient extrapolation is stable
and the ¯ux is unchanged. If it is directed away from the wall, a zero wall-normal ¯ux
condition is imposed. This boundary condition yields singularity-free steady-state solutions
which are stable even within shadow zones.

7. Under-relaxation

Shadow zones may form, either at solid boundaries as described above, or internally within
the ¯ow (e.g., particles centrifuging out from the centre of a ¯uid vortex) and the numerical
procedure must therefore be capable of predicting large regions where rp40: Without special
treatment, however, the numerical procedure does not guarantee positivity of density and zero
or negative values may appear with catastrophic results. To avoid this problem, a simple form
of temporal under-relaxation is used to damp large changes in rp when rp is itself small. The
change Drp calculated from Eq. (5) is thus modi®ed according to the prescription,

Drp, mod �
Drp

1�DF

����� Drp

rp ÿ rp, min

�����
�12�

where DF > 1 is a user-speci®ed damping factor (typically DF � 2). This ensures that the ®nal
updated value of rp is always greater than rp, min the lowest density desired in the calculation
(typically set at ten orders of magnitude less than the particle density at ¯ow inlet). Eq. (12)
shows that if Drp is negative, rp approaches this minimum value asymptotically. Similar

Fig. 7. Boundary conditions at a solid surface.
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damping is applied to the values of D�rpVi � to retain stability. The increase in CPU time
resulting from the application of this stabilising technique was found to be minimal.

8. Stability and convergence acceleration

A von Neumann stability analysis of the numerical scheme shows that a necessary condition
for stability of the one-dimensional equations is,

s � VDt
Dx

< 1 �13�

where V is the particle velocity, Dt is the time-step and Dx is the grid spacing, all terms being
evaluated locally. This is the expected CFL condition, implying that the computational velocity
Dx=Dt should not exceed the particle convective velocity V. Replacing the single time-stepping
procedure by a four-step Runge±Kutta integration allows the use of a larger time-step �s <
2:7� but the e�ective improvement is minimal because of the increased computational e�ort
involved. The convergence rate can be improved, however, by the use of non-uniform time-
steps based on the local application of Eq. (13). This is permissible if only the steady-state
solution is required and time accuracy is of no importance.
The analysis also shows that, because of the drag term in the momentum equation, a further

necessary condition for stability is,

Dt < tp �14�
Clearly, this requirement can seriously delay convergence for particles with small tp and a
number of studies (Ohkawa and Tomiyama, 1994; Young and Leeming, 1997) have advocated

Fig. 8. Schematic diagram showing time-step limitation for ¯ow in a boundary layer.

S.A. Slater, J.B. Young / International Journal of Multiphase Flow 27 (2001) 61±87 73



an implicit evaluation of the drag term in an attempt to overcome the problem. Unfortunately,
the implicit procedure can be shown to be exactly equivalent to an explicit method with a
modi®ed time step given by,

Dtmod � tpDt
tp � Dt

�15�

where Dt is calculated from Eq. (13) with s � 1: Instead of speeding convergence, the
procedure automatically limits the computational time step in such a way that Dtmod < tp:
In fact, the stability limit imposed by the drag term gives rise to problems which are not

restricted to particle ¯ows with small tp: Fig. 8, for example, is a schematic representation of
the ¯ow of particles in a boundary layer. As the gas (and hence particle) velocity decreases
near the wall, the time step Dt (for s � 1, say) increases at a rate inversely proportional to V
(assuming constant grid spacing Dx). Irrespective of the value of tp, however, a point is
eventually reached where Dt calculated from Eq. (13) exceeds tp: The maximum stable time-
step is now tp and the e�ective value of s drops from unity at this point to near-zero at the
wall. The convergence rate in this region is therefore seriously retarded.
Problems stemming from the drag-stability requirement can be overcome by the use of

di�erent computational time-steps in the mass and momentum conservation equations.
Consider the one-dimensional particle continuity equation,

@rp

@t
� @

ÿ
rpV

�
@x

� 0 �16�

When V is constant, the solution is rp � constant along the characteristics dx=dt � V: Assuming
jUÿ Vj � jUj, this implies that density waves propagate through the domain at approximately
the local gas ¯ow velocity. A stability analysis then shows that, for an explicit numerical
method, the time-step is limited by the CFL condition, Dtc < Dx=U: If a much smaller time-
step is used as a result of the drag-stability limitation of the momentum equation, the
convection of density waves will be dramatically slowed. Indeed, if Dtc � tp and tp40, the
convergence time becomes in®nite. This seems unsatisfactory because the continuity equation
(in isolation) is not a�ected by the drag-stability issue.
Consider now the one-dimensional momentum equation in non-conservative form,

@V

@t
� V

@V

@x
� Uÿ V

tp

�17�

For the special case where the gas velocity U is constant, the solution is,

Uÿ V � �Uÿ V�0exp
ÿÿ t=tp

� �18�

where t is the time measured in a Lagrangian sense along the particle pathline. The slip
velocity therefore decays to its local equilibrium value with a timescale of the order tp and this
is the origin of the drag-stability limitation. A stability analysis shows that explicit numerical
integration of the momentum equation in Eulerian form requires Dtm � tp:
These considerations therefore suggest that Dtc should be governed by the CFL condition
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while Dtm should be limited by the relaxation time tp in cases where tp < Dtc: This is essentially
the procedure adopted but care must be taken with the numerical implementation. Thus, the
continuity equation (5) is applied with a time step Dtc to obtain a density change Drp,c which is
used to update rp: Similarly, the i-component momentum equation (6) is applied with a time-
step Dtm to obtain the change D�rpVi � which is used to update �rpVi �: The velocity change DVi

is also required in order to calculate an updated value of Vi for the next momentum ¯ux

Fig. 9. Convection of density waves in a boundary layer.
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evaluation and is obtained by writing,

rpDVi � D
ÿ
rpVi

�ÿ ViDrp,m �19�

where, for consistency, Drp,m�Drp,c�Dtm=Dtc�: This procedure makes possible the calculation of
particle ¯ows with very small tp which otherwise would be precluded by the inordinately long
CPU times required to obtain convergence.
An example is shown in Fig. 9. Particles were computationally injected into a laminar

boundary layer with a slip velocity of zero and a uniform particle density of unity. The results
of four separate calculations are shown and, for each calculation, four plots are presented
which chart the temporal development of the density ®eld. Fig. 9(a) and (b) refer to particles
with relatively large tp, chosen so that the crossover point where Dtc � tp occurred
approximately half-way through the layer. Above this point, the method with equal time-steps
has no trouble in propagating the ¯ow of information. Since s is held constant in this region,
the computational wave propagation velocity is not a function of distance from the wall and
the wave propagates uniformly. Below the crossover point, s decreases as V ÿ1 and the
propagation of information from the inlet is delayed. The method with unequal time-steps
shows no such limitation and the density wave propagates through the whole layer with the
same velocity. At smaller tp (Fig. 9(c) and (d)), the di�erence is more acute. Propagation of the
density wave is extremely slow using equal time-steps, while the method with unequal time-
steps is una�ected by the magnitude of tp:

9. Lagrangian tracking

A Lagrangian particle tracking program was also written to assess the accuracy of the
Eulerian method and was applied to the same test cases described in subsequent sections. The
Lagrangian method is well documented (e.g., Crowe et al., 1977; Valentine and Decker, 1994)
and few details are required here. The present code uses bi-linear interpolation to calculate the
local gas velocity components within a cell. A simple ®rst-order, forward-di�erence, time
derivative is used since accuracy is maintained by integrating over the necessarily small time
steps required to achieve good spatial continuity of the cell-averaged values of rp and the Vi

(which are calculated after all the particles have been tracked through the domain).

10. Particle ¯ow over a circular cylinder

Particle transport in a gas ¯ow over a circular cylinder provides a good illustration of many
of the features discussed in previous sections. This test case was used solely for the purpose of
developing and re®ning the numerical calculation procedure and no attempt was made to
model the gas ¯ow®eld realistically. Accordingly, the velocity ®eld was computed using an
inviscid compressible Euler solver which, of course, could not reproduce the boundary layers
on the cylinder surface nor the unsteady separated wake ¯ow. Accepting this ¯ow®eld as a
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Fig. 10. Particle transport over a cylinder in an inviscid gas ¯ow. Contours of particle density.

S.A. Slater, J.B. Young / International Journal of Multiphase Flow 27 (2001) 61±87 77



basis, the Eulerian and Lagrangian particle codes were then used to compute the transport of
particles injected uniformly at the inlet boundary with zero slip velocity.
Fig. 10 shows a comparison between the particle density ®elds computed by the Eulerian and

Lagrangian methods for mono-dispersed particles with diameters of 5 and 150 mm. The
corresponding Stokes numbers (based on the cylinder diameter and free stream ¯ow velocity)
are 0.001 and 0.75, respectively. For the 5 mm particles (Fig. 10(a) and (b)), the velocity slip is
very small and the trajectories only deviate from the (inviscid) gas ¯ow near the rear stagnation
point where a tiny shadow zone is formed. Despite the fact that 10,000 particle trajectories
were used for the Lagrangian calculation, some statistical scatter is still plainly visible in
Fig. 10(a). Clearly, extending the technique for use in three-dimensional geometries is likely to
incur prohibitive computational penalties if accurate predictions of density ®elds are required.
The Eulerian calculation, on the other hand, generates a smooth density ®eld with only
moderate computational e�ort (Fig. 10(b)). This was achieved using unequal time-steps in the
mass and momentum equations as described previously. A calculation using equal time-steps is
not a practical option at such small Stokes numbers because of the enormous CPU time
required to obtain convergence.
The calculation for the 150 mm particles is not a�ected by convergence issues but has its own

special problems because the particles separate from the cylinder much earlier and the shadow
zone covers a very large portion of the computational domain. Fig. 10(c) and (d) show that
both methods generate similar density ®elds. In the shadow zone, the Lagrangian calculation
predicts a particle density of exactly zero simply because no trajectories enter the region. The
Eulerian calculation converges to a value which is ten orders of magnitude less than that in the
free-stream (but is still, nevertheless, ®nite and positive). This near-zero, but ®nite, density is
established stably throughout the `virtual' particle ¯ow in the shadow zone and demonstrates
the e�ectiveness of the under-relaxation technique described previously. The particle velocity
vectors from the Eulerian calculation are shown in Fig. 11(a). On the upstream side of the
cylinder, the particles reach the surface with a ®nite wall-normal component of velocity and
inertially deposit. Moving along the cylinder surface in the downstream direction, the wall-
normal component of velocity decreases until the particle ¯ow is tangential to the surface. This
de®nes the start of the shadow zone. Downstream of this point, the velocity near the wall
points away from the surface and the zero wall-normal mass-¯ux boundary condition is
activated automatically, avoiding any spurious entrainment of particles from the ¯ow
boundary. The particle velocity throughout the shadow zone is well-behaved, even as rp40:
Fig. 11(b) shows the percentage di�erence in particle velocity between the Lagrangian and
Eulerian calculations. Clearly the agreement is excellent, the di�erences rarely exceeding 0.25%.
Indeed, it is generally found that agreement between the velocity ®elds is, if anything, slightly
better than between the density ®elds.
One of the most challenging tasks for an Eulerian solver is the accurate prediction of the

density pro®le across the discontinuous transition at the edge of a shadow zone.
Characteristically, trajectories tend to `bunch up' in these regions resulting in values of rp

which may be many times higher than those in the free-stream. This behaviour is shown
graphically in Fig. 12(a) for the 150 mm particles. The Lagrangian calculation predicts a peak
particle density, some four times the free-stream value, followed by a genuinely discontinuous
transition to a density of precisely zero in the shadow zone. The Eulerian calculation, on the
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other hand, shows signi®cant smoothing, an e�ect which is due almost entirely to the
coarseness of the grid rather than the arti®cial di�usion. (In fact, the anisotropy of the arti®cial
di�usion ensures that its magnitude normal to the convective particle ¯ow direction is near-
zero.) In order to improve the resolution near the edge of the shadow zone a simple technique
was used whereby each gridline connecting two mesh points was notionally replaced by a
spring with a spring constant related to the local magnitude of rrp: In regions of high jrrpj,
the springs contracted the grid thus increasing the density of points where required while
retaining a structured mesh with the same number of cells overall. Fig. 13 shows the original
and modi®ed grids, and Fig. 12(b) shows the very signi®cant improvement in the Eulerian
prediction of the particle density pro®le near the edge of the shadow zone. The average change
in density across the discontinuity is almost an order of magnitude per computational cell. It is

Fig. 11. Eulerian and Lagrangian particle velocities, Stokes no. = 0.75.
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also worth noting that the use of `¯ux-limiting' schemes which try to remove false Gibbs-
phenomenon-like overshoots at discontinuities would ®nd it di�cult to avoid smoothing the
sharp density peak associated with trajectory bunching which is such a characteristic of these
regions.
A comparison of the Eulerian and Lagrangian predictions of particle density and deposition

rate on the cylinder surface are shown in Fig. 14, plotted as functions of angle from the
forward stagnation point. Fig. 14(a) shows results for the 5 mm particles. Both methods predict

Fig. 12. Particle density pro®les at the shadow zone boundary (Stokes no. = 0.75) (ÐÐÐ) Lagrangian, (.)
Eulerian.

Fig. 13. Original and modi®ed computational grids.
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a reduction in rp at the stagnation point which is incorrect as rp should become in®nite for

subcritical Stokes numbers (Taylor, 1940). However, the particle pathlines near the stagnation

point have very high curvature and this e�ect can only be captured by employing an

inordinately ®ne computational mesh. Away from the stagnation point, the ¯ow recovers

quickly and the Eulerian method predicts a smoothly decreasing particle density around the

cylinder. This is in keeping with the very slight centrifuging e�ect which establishes the thinnest

of shadow zones adjacent to the cylinder surface. The Eulerian method is able to recognise this

and activates the zero wall-normal particle ¯ux boundary condition which, in turn, results in

the (correct) prediction of a zero deposition rate over the whole cylinder surface. In contrast,

the Lagrangian method has great di�culty in handling such small slip velocities and

accumulates numerical errors which are responsible for the unphysical behaviour of the particle

density from about 608 and the four `rogue' deposition points. Fig. 14(b) shows the results for

the 150 mm particles. Both methods give virtually identical results for particle density and

deposition rate, except near the particle separation point where the Eulerian method displays a

slight smoothing as the density approaches zero.

The prediction of shadow zones is such a vital and challenging aspect of Eulerian particle

calculations that it is instructive to examine their temporal evolution. Fig. 15 shows contour

plots of rp and particle velocity vectors at a series of time-steps from the initial guess for the

150 mm particle ¯ow over the cylinder. The transient solution is not, of course, time-accurate.

From an initial guess of rp � 0:5 throughout the ®eld, the wave of particles with rp � 1

convecting from the inlet is apparent. In the early stages, as a result of centrifuging, many

velocity vectors adjacent to the cylinder point from the wall back into the ¯ow. This

automatically activates the zero wall-normal mass ¯ux boundary condition and, after 60 time-

steps, these vectors cover approximately two-thirds of the cylinder surface. As a result,

particles leave wall adjacent cells but cannot enter, and rp drops. Regions of low density

quickly form, are convected in the downstream direction to form the shadow zone and, after

about 300 time-steps, the ¯ow is fully developed. Clearly, the success of such a calculation is

Fig. 14. Variation of particle density and deposition rate on the cylinder surface.
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Fig. 15. Temporal evolution of the shadow zone (Stokes no. = 0.75, Eulerian calculation).
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very dependent on the ability of the wall boundary extrapolation to respond to local ¯ow
conditions in the correct manner.

11. Particle transport in a turbine cascade

Predicting the transport of particulates through a turbine cascade is an engineering problem
of interest to both the steam and gas turbine industries (i.e., the deposition of water droplets
on wet steam turbine blades and the deposition of ash particles in coal-®red gas turbines).
Because of the practical importance and also as an example of a more complex ¯ow®eld,
results are now presented for particle ¯ow through a turbine blade passage.
The chosen blade was a NASA TN D-3751 pro®le which was used in a Von Karman

Institute workshop on multi-dimensional ¯ow calculations. The gas ¯ow®eld at the design
condition was calculated using an inviscid Euler solver so that the e�ects of streamline
curvature could be assessed without the presence of the boundary layers. The Eulerian and
Lagrangian methods were then used to calculate the transport of 6 mm particles through the
cascade, corresponding to a Stokes number of 12 (based on the blade chord length and exit
¯ow velocity). Particles were assumed to enter the cascade with rp � 1 and zero slip velocity.
Initial tests with the Lagrangian tracking code indicated that the statistical convergence of

the particle density ®eld to an accuracy of 21% required a prohibitively large number of
particle trajectories. This was mainly due to the very ®ne mesh spacing near the blade surface
used to capture the high velocity gradients at the leading and trailing edges. Relaxing the
criterion to 210% resulted in a requirement of 50,000 trajectories which was deemed
acceptable. (Once again, this highlights the computational penalties associated with extending
Lagrangian methods to three-dimensional geometries.)
Fig. 16 shows the Eulerian and Lagrangian calculations of the particle density ®eld. The

spatial extents of the shadow zones are almost indistinguishable and the only substantial
di�erence between the two calculations is the smearing of the high density gradients in the
Eulerian simulation. As with the particle ¯ow over the cylinder, there is considerable `trajectory
bunching' resulting in high values of rp near the shadow zone boundary. Fig. 17 shows
magni®ed views of the Eulerian and Lagrangian particle density ®elds near the leading edge of
the blade. Due to the curvature of the streamlines, a small shadow zone is formed on the
pressure surface extending from slightly aft of the leading edge to about one-third of the blade
chord, where the particle ¯ow reattaches. That this very ®ne feature can be captured by the
Eulerian method is an indication of its accuracy and robustness. It is interesting to note that a
deposition-free region in precisely this position is often found on real turbine blades after
operation in dirty-gas ¯ows.
A more quantitative comparison is shown in Fig. 18 where the surface particle density and

deposition rate are plotted as functions of (dimensionless) distance from the leading edge.
Apart from some scatter at the leading edge on the part of the Lagrangian calculations, the
agreement between the two methods is excellent, showing that the Eulerian method is
eminently suited to the solution of such inertially dominated ¯ows.

S.A. Slater, J.B. Young / International Journal of Multiphase Flow 27 (2001) 61±87 83



12. Conclusions

The paper has described a robust, new Eulerian calculation method for two-dimensional,
non-turbulent particle ¯ows which can be applied even in cases where large particle-free
shadow zones form as a result of high particle inertia. The method includes a number of novel
numerical techniques which have not been reported previously but which are essential to

Fig. 16. Particle transport through a turbine cascade: Stokes no. = 12, Eulerian and Lagrangian calculations.
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ensure accurate representation of the physical processes, stability of the numerical method and
convergence in realistic timescales (particularly for ¯ows at very low Stokes number).
Traditionally, Lagrangian tracking methods have been recommended for many classes of

dilute particle ¯ow but this paper makes the point that they are often computationally very
expensive when an accurate representation of the particle density ®eld is required. The problem
is compounded if the ¯ow®eld is three-dimensional or if a random walk element is introduced
to model the response of the particles to the turbulence of the carrier ¯uid. The two test cases
reported in this paper have shown, however, that an Eulerian method can o�er a very
satisfactory alternative, particularly in terms of the computational e�ort required for more

Fig. 17. Magni®ed view at the leading edge showing thin shadow zone on pressure surface: Stokes no. = 12,
Eulerian and Lagrangian calculations.

Fig. 18. Variation of particle density and deposition rate on the blade surface: Stokes no. = 12, (ÐÐÐ) Eulerian,
(.) Lagrangian. ÿ1 to 0: pressure surface, 0 to 1: suction surface.
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complex ¯ows. Furthermore, the accuracy is excellent for many types of ¯ow at large Stokes
numbers which are normally considered to be the province of Lagrangian methods. The only
major disadvantage is in handling crossing trajectories and particle re¯ections at solid surfaces
as the Eulerian equations (couched in terms of a single-valued velocity vector) then become ill-
posed. Extensions to three-dimensional and turbulent ¯ows are possible, however, and such
developments will form the basis for future work at Cambridge.
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